
IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 3, June-July, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

1

Frequent Pattern Mining for Multi -Relational Databases

Using Candidate Generation

Janvi Modi
1
,

Narendra Chauhan

2

1
Department of Computer Engineering, Birla Vishvakarma Mahavidyalaya, Anand, India

2

Department of Information Technology, D. Patel Institute of Technology, Anand, India

Abstract
This paper presents the process of mining frequent patterns from

relational database using the concept of candidate generation. The

concept of generating frequent itemsets from transaction database

(similar to Apriori algorithm) is extended on relational database

considering multiple relations. The paper illustrates how the

relational candidate itemsets are constructed and how their support is

counted for multiple relations. Based on the criteria of minimum

support , frequent itemsets are extracted. In the paper, the need of

multi – relational data mining is justified and its categories are also

explained in brief.

1. Introduction

Data mining is a field that aims at developing methods for

exploring or analyzing large databases in order to extract some

knowledge or innovative information from the existing data

[5].Most of the data mining methods are focusing on

extracting knowledge from transactional database (a single

table) and this limitation of data mining methods hinders the

use of an algorithm that mines patterns or knowledge from

multiple relations [6]. Due to the presence of multiple relations

in the relational database and dependency among these

relations based on primary key – foreign key attributes, it is

difficult to extend the same concepts and algorithms of

frequent itemset mining on relational database. Transaction

data are those data which resides in a single table and are not

connected to tuples in other tables whereas relational data

resides in multiple tables or relations and the tuples in one

relation are connected to tuples in other relations. Data mining

algorithms apply intelligent methods to mine data or patterns

only from a single table. Mining in a relational database often

requires mining across multiple interconnected relations. Such

kind of mining across multiple data relations is well-known as

multi relational data mining (MRDM), and it has been defined

and elaborated by many researchers [1][2]. The need of

MRDM is further justified in the following subsection.

1.1 Why MRDM?

Multi – Relational Data Mining (MRDM) is a field which has

emerged to solve this limitation of data mining methods. The

fact that drives this field is the increasing amount of data

storage in various real time applications such as banks, sports,

superstores, etc. There are many data mining algorithms

available which looks for patterns but, this algorithms look

for patterns in a single transaction table whereas the real –

time databases needs to be stored in multiple tables [3][4][5].

This limitation induces the need of multi-relational data

mining algorithms which can help in mining patterns from a

relational database which consists of several tables which are

semantically related [6].

MRDM aims at developing methods

for extracting valuable information or knowledge from

multiple tables from a relational database.

Similar to Data Mining functionalities, we can also classify

MRDM functionalities into 3 main categories like multi –

relational classification , multi – relational clustering and multi

– relational frequent pattern mining. Multi – relational

classification is used to develop a classification model that

utilizes information in different relations. Multi – relational

clustering is used to group tuples both from their own relation

and from different relations into clusters. Multi – relational

frequent pattern mining is used to find patterns that occurs

frequently in the relations [2].

In this paper, the focus is given on multi – relational frequent

pattern mining, for which an algorithm that mines frequent

patterns from multiple relations by using the approach of

candidate generation is presented and elaborated with

example.

Candidate can be defined as a set of item or items and

candidate generation is a method to form a set of item or items

by mapping each item present in the relation on various keys.

Candidate Generation produces a set of items known as

Itemset which consists of all the combinations of all the items

present in multiple relations [1].

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 3, June-July, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

2

2. The Algorithm

In this section, we present an algorithm to mine frequent

itemsets from relational database using the candidate

generation based approach. Candidate Generation approach is

known among data mining researchers, which is used to mine

frequent patterns from transactional data also [1]. The well-

known algorithm that is used to mine frequent itemsets from

transactional database using candidate generation approach is

Apriori Algorithm [1]. In this paper, the same concept has

been extended for achieving the task of multi – relational

frequent pattern mining. A concept of finding interesting

itemsets from relational database is also proposed by Goethals,

et al. [7]. The algorithm presented in this work is simplified

from and with some modification to the Naïve algorithm

presented in [7]. The algorithm is a combination of the above

two approaches which mines frequent patterns from multiple

relations by generating multi – relational candidate itemsets

and then finding frequent itemsets among them based on the

user defined threshold. This presented algorithm also takes

into consideration the mapping of items on different key

attributes from different relations, which is not considered in

[7]. The mapping on different keys while generating relational

candidate itemsets is demonstrated using example later in this

paper. The algorithm for finding frequent patterns from

relational database using candidate generation based approach

is shown in Fig.1.

Input: Set of relations and user defined minimum support

 count (min_sup).

Output: Set of frequent itemsets F generated from relational

 database.

 Step 1: Perform full outer join on all the available relations

 and get a join table J.

 J = R1 ∞ R2 ∞ …….. ∞ Rn

 Step 2 : Generate relational candidate itemsets

 RC1, RC2 ,….,RCn and Frequent Itemset

 RL1, RL2,…,RLn using the following steps.

 Repeat until RCn = NULL.

2.1 To generate first relational candidate

itemset RC1 by mapping all the unique

values of non-key attributes on all the

key attributes.

2.2 Find the support of candidate itemsets

by counting their number of occurrences

in join table J.

2.3 Generate first frequent relational itemset

RL1 by comparing their support counts

 with min_sup and discard those itemsets

 that are less than min_sup.

2.4 Generate next level of candidate

relational itemset RCk from RLk-1 by

performing a self join operation on

RLk-1 and calculate their support count

from join table J.

2.5 Identify frequent itemset RLk from RCk

by pruning those itemsets in RCk

which have support less than min_sup.

Step 3 :- The itemsets residing in RLk , k=1..n are the

 Frequent Itemsets.

Figure 1 – Algorithm for finding frequent items for relational database using

Candidate generation based approach

A relational database consists of multiple tables which are

connected with each other based on primary key foreign key

relations. The interconnections between relations (tables) of a

relational database can be well understood by looking at their

entity – relation diagram (ER – Diagram). The relations that

used for illustration of the presented concept are shown in

Tables 1(a-c) and the ER – Diagram corresponding to these

relations is shown in Fig. 2.

 Table 1 : Relation for Professor , Courses and Teaches

 Table 1(a) Table 1(b)

 Table 1(c)

Teaches

PID CID

A 1

A 2

B 2

B 3

C 4

D 5

D 6

E 7

F 8

G 9

G 10

G 11

I 11

Professor

PID Name Surname

A Jan P

B Jan H

C Jan VDB

D Piet V

E Erik B

F Flor C

G Gerrit DC

H Patrick S

I Susan S

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 3, June-July, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

3

 Table 2 : Join Table J

Full Outer Join J

P.PID P.Name P.Surname C.CID C.Credits C.Project

A Jan P 1 10 Y

A Jan P 2 10 N

B Jan H 2 10 N

B Jan H 3 20 N

C Jan VDB 4 10 N

D Piet V 5 5 N

D Piet V 6 10 N

E Erik B 7 30 Y

F Flor C 8 30 Y

G Gerrit DC 9 10 N

G Gerrit DC 10 10 N

G Gerrit DC 11 10 N

H Patrick S NULL NULL NULL

I Susan S 11 10 N

There are 3 tables shown in Table 1 out of which Table 1(a)

‘Professor’ and Table 1(c) ‘Courses’ are the entitiy tables and

the Table 1(b) Teaches is the Relation table which connects

the entities with each other. The ER –Diagram of the Relations

shown in Table 1 is shown in Figure 2 which consists of two

entities Professor and Courses which are connected to each

other via a relation Teaches.

Figure 2 : ER – Diagram For Relations shown in Table 1.

In the first step of the algorithm, merging or joining of all the

available relations or tables takes place into a single table

using all entities and relation. Join operation cannot be

performed using Equi Join [7] because if a tuple in one

relation is not connected to a tuple in another relation it will

not be included in the join table, which means that we loose

some information and so to create a Join Table we use a full

outer join [7]. Full outer join is said to combine the effects of

both right and left outer join. The reason to choose Full outer

join is that it connects all the tuples in all the relations with

each other even if they are not actually connected with each

other. It also correlates the non-connected tuples, if any with

the help of NULL operator [7]. The join of all the available

relations is performed and stored in a Join table named J.

The join table J created for relations shown in Table 1 is

shown in Table 2. This join table is created using full outer

join operation. This join table consists of all the combination

of all the tuples given in the relation.

After performing the join operation, the join table J is used to

generate candidate itemsets. Relational Candidate itemsets can

be defined as the set of all possible combinations of items

which are usually generated by mapping each non – key

attribute value to each key attribute value. Each relational

candidate itemset RCk consists of k items in it’s itemset.

Next, the support count of all the relational itemsets in RCk is

calculated. To calculate the support count of each relational

itemset, we need to count the unique occurrences of that item

from the join table J. The number of unique occurrences of

that item in the join table will reflect the support count of that

relational itemset.

In the next step pruning is carried out by finding out which

relational itemsets from the candidate sets are frequent. This is

done by generating frequent itemset RLk. RLk is generated

from RCk by removing those items from RCk that are not

frequent i.e. those items that have their support counts less

than the minimum support threshold min_sup. The minimum

support threshold is selected depending upon the requirements

of the application.

Similarly more candidate and frequent itemsets are

constructed until RCn = NULL.

3. Illustration using Example

 In this section, the generation of relational candidate itemsets

and relational frequent Itemsets is illustration following the

steps of the algorithm presented in section II.

Courses

CID Credits Project

1 10 Y

2 10 N

3 20 N

4 10 N

5 5 N

6 10 N

7 30 Y

8 30 Y

9 10 N

10 10 N

11 10 N

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 3, June-July, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

4

To generate first relational candidate itemset RC1, consider the

relations shown in Table 1. We map each non – key attribute

i.e. Name, Surname, Credits and Project onto it’s key attributes

i.e. pid and cid in our case. The relational candidate-1 itemsets

RC1 along with their support counts are shown in Table 3. The

support count of each itemset is calculated from the Join Table

J.

Table 3: A part of relational candidate-1 itemset (RC1) and their support counts

RC1 : Relational Candidate -1

Itemset
Itemset Support

{ Name = Jan}P.PID 3

{ Name = Jan}C.CID 4

{Credits=5}C.CID 1

{Credits=10}C.CID 7

{Surname=S}P.PID 2

………… ……..

The sementic meaning of the relational itemsets shown in

Table 3 can be given as follow :

{ Name = Jan }pid => “ How many unique professors (Pid)

 do we have whose name is Jan?”

{ Name = Jan }cid => “ How many unique courses (Cid) do we

 have which are taught by professor’s

 named Jan?”

To calculate the support counts of the relational itemsets shown

in Table 3, the unique occurrences of these itemsets from Table

2 i.e. the Join Table are counted. The support count calculation

of first relational itemset shown in Table 3 is as follows:

{ Name = Jan }pid => “ How many unique professor’s do we

 have whose name is Jan?”

Looking at Table 2, we see that we have 3 unique PID’s which

has Name = Jan. Those PID’s are A, B and C and so the

support count of this relational itemset is 3. Similarly, the

support counts of all the other relational itemsets are calculated.

To generate relational frequent-1 itemset RL1, we need to

compare the support count of each relational candidate itemset

in RC1 with the minimum support count min_sup. Minimum

support count can be defined as a threshold value, and the

itemset having support counts below this value is not

considered as frequent. The selection of the value of minimum

support count or threshold is application dependent. For our

example, let the minimum support min_sup be 3. Following

calculations and comparison are applied on the relational

candidate itemsets of Table 3.

{ Name = Jan }pid => Support = 3 ≥ min_sup. So, Accepted

{ Name = Jan }cid => Support = 4 ≥ min_sup. So, Accepted

{ Credits = 5 }cid => Support = 1 < min_sup. So, Rejected

{ Credits = 10 }cid => Support = 7 ≥ min_sup. So, Accepted

{ Surname = S}pid => Support = 2 < min_sup. So, Rejected

The part of relational frequent-1 itemsets RL1 formed from

RC1 after comparison with min_sup are shown in Table 4.

Table 4: A part of relational frequent-1 itemsets (RL1)

RL1 : Relational Frequent-1 Itemset
Itemset Support

{ Name = Jan}P.PID 3

{ Name = Jan}C.CID 4

{Credits=10}C.CID 7

………. …….

Now, we will see how relational candidate-2 itemsets RC2 are

generated from relational frequent-1 itemsets RL1. RC2 can be

generated by performing a self join operation [1][7] on RL1.

Self join operation means to join a table to itself.

There are number of combinations which can be formed by self

joining RL1, one of which is stated below:

{(Name = Jan), (Credits = 10)}Pid,Cid => “ How many unique

Professor’s named Jan teaches a Course having Credits 10?”

A part of relational candidate-2 itemsets RC2 are shown in

Table 5. It can be observed from above stated relational

candidate-2 itemset that it has been formed by mapping two

keys from two relations simultaneously. This type of generation

is not included in [7].

Table 5: A part of relational candidate-2 itemset (RC2) and their support

RC2 : Relational Candidate-2 Itemset
Itemset Support

{(Name = Jan) , (Credits = 10)}P.PID,C.CID 4

{(Name = Jan) , (Credits = 10)}C.CID 3

………. …….

Now, to generate relational frequent-2 itemset RL2 from RC2,

similar calculations are performed as in generating RL1. With

min_sup = 3, the combinations which comprises RL2 are

shown in Table 6.

IJREAT International Journal of Research in Engineering & Advanced Technology, Volume 1, Issue 3, June-July, 2013

ISSN: 2320 - 8791

www.ijreat.org

www.ijreat.org
Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (www.prdg.org)

5

Table 6: A part of relational frequent-2 itemsets (RL2)

RL2 : Relational Frequent-2 Itemset
Itemset Support

{(Name = Jan) , (Credits = 10)}P.PID,C.CID 4

{(Name = Jan) , (Credits = 10)}C.CID 3

………. …….

Similarly, further relational candidate and relational frequent

itemsets can be generated until empty candidate itemset i.e.

RCn = NULL is found.

The candidate generation and obtaining frequent itemset

process demonstrated in the above example illustrates briefly

the process of mining frequent itemsets from multiple relations

using the candidate generation approach. Similar to the

drawback of Apriori algorithm, the major drawback with this

approach is that a large number of relational candidate

itemsets are generated which is a computationally expensive

process. The computations and number of candidate itemsets

increases with the increase in size of relational databases.

Hence, this candidate generation approach is more suitable for

a relational database having small number of relations as

compared to the database having more relations.

4. Summary and Conclusion

This paper briefly explained the need of multi-relational data

mining for real world applications. In spite of much

recognition and need of this field, it yet requires much

exploration. In this paper, an attempt has been made to derive

the process of finding frequent itemsets from small size

relational database. The same theoretical concept is

demonstrated using an illustrative example. The algorithm

follows an extended procedure similar to candidate generation

based Apriori algorithm which is applicable to transactional

database. In the paper, the concepts of relational candidate

itemsets and relational frequent itemsets are given and a

procedure to calculate the support count as well as procedure

to obtain next level of candidate itemsets based on previous

frequent itemsets are also introduced.

Though using the concept of candidate generation, it is

possible to extract frequent itemsets from relational database,

this process generates large number of relational candidate

itemsets. Even with increase in size of relational database, the

number of relational candidate itemsets increases drastically.

Hence, this process is computationally expensive. With

modifications to the presented approach, and yet applying tree

based approaches may lead to increase in efficiency and

efficacy of the goal.

 References

[1] M Kamber, J Han, “Data Mining: Concepts and Techniques”, Morgan
Kaufmann publishers, 2006, Pp (1-36),(243-276).

[2] M Kamber, J Han, “Data Mining: Concepts and Techniques”, Morgan
Kaufmann publishers, 2006, Pp (571-582).

[3] S.Dzeroski, “Multi-Relational Data Mining : An Introduction” , ACM
SIGKDD Explorations, Volume 5 Issue 1, July 2003, Pp (1-16)

[4] S. Dzeroski ,L D Raedt , “Multi–Relational Data Mining : The Current
Frontiers”, ACM SIGKDD Explorations , Volume 5 Issue 1, July 2003 ,
Pp(100-101).

[5] P. Domingos, “Prospects and Challenges for Multi – Relational Data
mining”, SIGKDD Exploration, Volume 4, Issue 2, Pp (1-3).

[6] C. R Valencio , F.T Oyama, P.S Neto ,A. C. Colombini, A. M. Cansian,
R.C.G Sooza & P.L.P Correa , “ MR-Radix: A Multi-Relational data
mining algorithm” Human-Centric Computing & Information Science A
Springer Open Journal 2012, Pp (2-17).

[7] B. Goethals , W. L Page , M. Mampaey , “Mining Interesting Sets and
Rules in Relational Databases.”, SAC’ 10 March 22-26, 2010, Sierre,
Switzerland.

