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Abstract 
This paper presents the process of mining frequent patterns from 

relational database using the concept of candidate generation. The 

concept of generating frequent itemsets from transaction database 

(similar to Apriori algorithm) is extended on relational database 

considering multiple relations. The paper illustrates how the 

relational candidate itemsets are constructed and how their support is 

counted for multiple relations. Based on the criteria of minimum 

support , frequent itemsets are extracted. In the paper, the need of 

multi – relational data mining is justified and its categories are also 

explained in brief.  

 

 

1. Introduction 

 
Data mining is a field that aims at developing methods for 

exploring or analyzing large databases in order to extract some 

knowledge or innovative information from the existing data 

[5].Most of the data mining methods are focusing on 

extracting knowledge from transactional database (a single 

table) and this limitation of data mining methods hinders the 

use of an algorithm that mines patterns or knowledge from 

multiple relations [6]. Due to the presence of multiple relations 

in the relational database and dependency among these 

relations based on primary key – foreign key attributes, it is 

difficult to extend the same concepts and algorithms of 

frequent itemset mining on relational database. Transaction 

data are those data which resides in a single table and are not 

connected to tuples in other tables whereas relational data 

resides in multiple tables or relations and the tuples in one 

relation are connected to tuples in other relations. Data mining 

algorithms apply intelligent methods to mine data or patterns 

only from a single table. Mining in a relational database often 

requires mining across multiple interconnected relations. Such 

kind of mining across multiple data relations is well-known as 

multi relational data mining (MRDM), and it has been defined 

and elaborated by many researchers [1][2]. The need of 

MRDM is further justified in the following subsection.    

1.1 Why MRDM? 

Multi – Relational Data Mining (MRDM) is a field which has 

emerged to solve this limitation of data mining methods. The 

fact that drives this field is the increasing amount of data 

storage in various real time applications such as banks, sports, 

superstores, etc. There are many data mining algorithms 

available which looks for patterns but, this  algorithms look 

for patterns in a single transaction table whereas the real – 

time databases needs to be stored in multiple tables [3][4][5]. 

This limitation induces the need of multi-relational data 

mining algorithms which can help in mining patterns from a 

relational database which consists of several tables which are 

semantically related [6].
 
MRDM aims at developing methods 

for extracting valuable information or knowledge from 

multiple tables from a relational database.
 

Similar to Data Mining functionalities, we can also classify 

MRDM functionalities into 3 main categories like multi – 

relational classification , multi – relational clustering and multi 

– relational frequent pattern mining. Multi – relational 

classification is used to develop a classification model that 

utilizes information in different relations. Multi – relational 

clustering is used to group tuples both from their own relation 

and from different relations into clusters. Multi – relational 

frequent pattern mining is used to find patterns that occurs 

frequently in the relations [2]. 

In this paper, the focus is given on multi – relational frequent 

pattern mining, for which an algorithm that mines frequent 

patterns from multiple relations by using the approach of 

candidate generation is presented and elaborated with 

example.  

Candidate can be defined as a set of item or items and 

candidate generation is a method to form a set of item or items 

by mapping each item present in the relation on various keys. 

Candidate Generation produces a set of items known as 

Itemset which consists of all the combinations of all the items 

present in multiple relations [1]. 
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2. The Algorithm 
 

In this section, we present an algorithm to mine frequent 

itemsets from relational database using the candidate 

generation based approach. Candidate Generation approach is 

known among data mining researchers, which is used to mine 

frequent patterns from transactional data also [1]. The well-

known algorithm that is used to mine frequent itemsets from 

transactional database using candidate generation approach is 

Apriori Algorithm [1]. In this paper, the same concept has 

been extended for achieving the task of multi – relational 

frequent pattern mining. A concept of finding interesting 

itemsets from relational database is also proposed by Goethals, 

et al. [7]. The algorithm presented in this work is simplified 

from and with some modification to the Naïve algorithm 

presented in [7]. The algorithm is a combination of the above 

two approaches which mines frequent patterns from multiple 

relations by generating multi – relational candidate itemsets 

and then finding frequent itemsets among  them based on the 

user defined threshold. This presented algorithm also takes 

into consideration the mapping of items on different key 

attributes from different relations, which is not considered in 

[7]. The mapping on different keys while generating relational 

candidate itemsets is demonstrated using example later in this 

paper. The algorithm for finding frequent patterns from 

relational database using candidate generation based approach 

is shown in Fig.1. 

 

Input:   Set of relations and user defined minimum support  

              count  (min_sup).                                                                      

Output: Set of frequent itemsets F generated from relational    

               database.    

 Step 1:  Perform full outer join on all the available relations                               

  and get a join table J. 

 J = R1 ∞ R2  ∞ ……..  ∞ Rn 

 Step 2 :  Generate relational candidate itemsets  

                RC1, RC2 ,….,RCn  and Frequent Itemset  

                RL1, RL2,…,RLn using the following steps. 

            Repeat until RCn = NULL.  

2.1 To generate first relational candidate 

itemset RC1 by mapping all the unique 

values of non-key attributes on all the 

key attributes. 

2.2 Find the support of candidate itemsets 

by counting their number of occurrences  

in join table J. 

2.3 Generate first frequent relational itemset  

RL1  by comparing their support counts  

      with min_sup and discard those itemsets                

                                   that are less than min_sup.                                                 

2.4 Generate next level of candidate 

relational itemset RCk from RLk-1 by 

performing a self join operation on  

RLk-1 and calculate their support count 

from  join table J. 

2.5 Identify frequent itemset RLk from RCk    

by pruning those itemsets in RCk         

which have support less than min_sup. 

Step 3    :-   The itemsets residing in RLk  , k=1..n are the  

       Frequent Itemsets. 

 

Figure 1 – Algorithm for finding frequent items for relational  database using 

Candidate generation based approach 

A relational database consists of multiple tables which are 

connected with each other based on primary key foreign key 

relations. The interconnections between relations (tables) of a 

relational database can be well understood by looking at their 

entity – relation diagram (ER – Diagram). The relations that 

used for illustration of the presented concept are shown in 

Tables 1(a-c) and the ER – Diagram corresponding to these 

relations is shown in Fig. 2. 

 

             Table 1 : Relation for Professor , Courses and Teaches 

                      Table 1(a)                                              Table 1(b) 

 

 

 

 

 

 

 

 

 

 

 

                                            Table 1(c)                    

Teaches  

PID CID 

A 1 

A 2 

B 2 

B 3 

C 4 

D 5 

D 6 

E 7 

F 8 

G 9 

G 10 

G 11 

I  11 

Professor 

PID Name Surname 

A Jan P 

B Jan H 

C Jan VDB 

D Piet V 

E Erik B 

F Flor C 

G Gerrit DC 

H Patrick S 

I Susan S 
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                               Table 2 : Join Table J 

Full Outer Join J 

P.PID P.Name P.Surname C.CID C.Credits C.Project 

A Jan P 1 10 Y 

A Jan P 2 10 N 

B Jan H 2 10 N 

B Jan H 3 20 N 

C Jan VDB 4 10 N 

D Piet V 5 5 N 

D Piet V 6 10 N 

E Erik B 7 30 Y 

F Flor C 8 30 Y 

G Gerrit DC 9 10 N 

G Gerrit DC 10 10 N 

G Gerrit DC 11 10 N 

H Patrick S NULL NULL NULL 

I Susan S 11 10 N 

 

There are 3 tables shown in Table 1 out of which Table 1(a) 

‘Professor’ and Table 1(c) ‘Courses’ are the entitiy tables and 

the Table 1(b) Teaches is the Relation table which connects 

the entities with each other. The ER –Diagram of the Relations 

shown in Table 1 is shown in Figure 2 which consists of two 

entities Professor and Courses which are connected to each 

other via a relation Teaches.  

 

Figure 2 :  ER – Diagram For Relations shown in Table 1. 

In the first step of the algorithm, merging or joining of all the 

available relations or tables takes place into a single table 

using all entities and relation. Join operation cannot be 

performed using Equi Join [7] because if a tuple in one 

relation is not connected to a tuple in another relation it will 

not be included in the join table, which means that we loose 

some information and so to create a Join Table we use a full 

outer join [7]. Full outer join is said to combine the effects of 

both right and left outer join. The reason to choose Full outer 

join is that it connects all the tuples in all the relations with 

each other even if they are not actually connected with each 

other. It also correlates the non-connected tuples, if any with 

the help of NULL operator [7]. The join of all the available 

relations is performed and stored in a Join table named J.  

The join table J created for relations shown in Table 1 is 

shown in Table 2. This join table is created using full outer 

join operation. This  join table consists of all the combination 

of all the tuples given in the relation. 

After performing the join operation, the join table J is used to 

generate candidate itemsets. Relational Candidate itemsets can 

be defined as the set of all possible combinations of items 

which are usually generated by mapping each non – key 

attribute value to each key attribute value.   Each relational 

candidate itemset  RCk consists of k items in it’s itemset.  

Next, the support count of all the relational itemsets in RCk is 

calculated. To calculate the support count of each relational 

itemset, we need to count the unique occurrences of that item 

from the join table J. The number of unique occurrences of 

that item in the join table will reflect the support count of that 

relational itemset.  

In the next step pruning is carried out by finding out which 

relational itemsets from the candidate sets are frequent. This is 

done by generating frequent itemset RLk. RLk is generated 

from RCk  by removing those items from RCk that are not 

frequent i.e. those items that have their support counts less 

than the minimum support threshold min_sup. The minimum 

support threshold is selected depending upon the requirements 

of the application. 

Similarly more candidate and frequent itemsets are 

constructed until RCn = NULL. 

 

3. Illustration using Example 

  In this section, the generation of relational candidate itemsets 

and relational frequent Itemsets is illustration following the 

steps of the algorithm presented in section II. 

Courses 

CID Credits Project 

1 10 Y 

2 10 N 

3 20 N 

4 10 N 

5 5 N 

6 10 N 

7 30 Y 

8 30 Y 

9 10 N 

10 10 N 

11 10 N 
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To generate first relational candidate  itemset RC1, consider the 

relations shown in Table 1. We map each non – key attribute 

i.e. Name, Surname, Credits and Project onto it’s key attributes  

i.e. pid and cid in our case. The relational candidate-1 itemsets 

RC1 along with their support counts are shown in Table 3.  The 

support count of each  itemset is calculated from the Join Table 

J. 

Table 3: A part of relational candidate-1 itemset (RC1) and their support counts 

RC1 : Relational Candidate -1 

Itemset 
Itemset Support 

{ Name = Jan}P.PID 3 

{ Name = Jan}C.CID 4 

{Credits=5}C.CID 1 

{Credits=10}C.CID 7 

{Surname=S}P.PID 2 

………… …….. 

 

The  sementic meaning of the relational itemsets shown in 

Table 3 can be given as follow : 

{ Name = Jan }pid   => “ How many unique professors (Pid) 

                                        do we have whose name is Jan?”  

{ Name = Jan }cid   => “ How many unique courses (Cid) do we 

                                        have which are taught by professor’s 

             named Jan?”  

 

To calculate the support counts of the relational itemsets shown 

in Table 3, the unique occurrences of these itemsets from Table 

2 i.e. the Join Table are counted. The support count calculation 

of first relational itemset shown in Table 3 is as follows: 

 

{ Name = Jan }pid   => “ How many unique professor’s do we 

                                        have whose name is Jan?” 

 

Looking at Table 2, we see that we have 3 unique PID’s which 

has Name = Jan. Those PID’s are A, B and C and so the 

support count of this relational  itemset is 3. Similarly, the 

support counts of all the other relational itemsets are calculated. 

 

To generate relational frequent-1 itemset RL1, we need to 

compare the support count of each relational candidate  itemset 

in RC1 with the minimum support count min_sup. Minimum 

support count can be defined as a threshold value, and the 

itemset having support counts below this value is not 

considered as frequent. The selection of the value of minimum 

support count or threshold is application dependent. For our 

example, let the minimum support min_sup be 3. Following 

calculations and comparison are applied on the relational 

candidate itemsets of Table 3.  

 

{ Name = Jan }pid    => Support = 3  ≥ min_sup.   So, Accepted 

{ Name = Jan }cid    => Support = 4  ≥ min_sup.   So, Accepted 

{ Credits = 5 }cid     => Support = 1  < min_sup.   So, Rejected 

{ Credits = 10 }cid   => Support = 7  ≥ min_sup.   So, Accepted 

{ Surname  =  S}pid => Support = 2  < min_sup.   So, Rejected 

 

The part of  relational frequent-1 itemsets RL1 formed from 

RC1 after comparison with min_sup are shown in Table 4. 
 

Table 4: A part of relational frequent-1  itemsets (RL1) 

RL1 : Relational Frequent-1 Itemset 
Itemset Support 

{ Name = Jan}P.PID 3 

{ Name = Jan}C.CID 4 

{Credits=10}C.CID 7 

………. ……. 

                         

Now, we will see how relational candidate-2 itemsets RC2 are 

generated from relational frequent-1 itemsets RL1. RC2 can be 

generated by performing a self join operation [1][7] on RL1. 

Self join operation means to join a table to itself.  

There are number of combinations which can be formed by self 

joining RL1, one of which is stated below: 

{(Name = Jan), (Credits = 10)}Pid,Cid => “ How many unique 

Professor’s named  Jan teaches a Course having Credits 10?” 

A part of relational candidate-2 itemsets RC2 are shown in 

Table 5. It can be observed from above stated relational 

candidate-2 itemset that it has been formed by mapping two 

keys from two relations simultaneously. This type of generation 

is not included in [7].                

Table  5: A part of relational candidate-2 itemset (RC2) and their support 

RC2 : Relational Candidate-2 Itemset 
Itemset Support 

{(Name = Jan) , (Credits = 10)}P.PID,C.CID 4 

{(Name = Jan) , (Credits = 10)}C.CID 3 

………. ……. 

                         

Now, to generate relational frequent-2 itemset RL2 from RC2, 

similar calculations are performed as in generating RL1. With 

min_sup = 3, the combinations which comprises RL2 are 

shown in Table 6. 
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Table  6: A part of relational frequent-2  itemsets (RL2) 

RL2 : Relational Frequent-2 Itemset 
Itemset Support 

{(Name = Jan) , (Credits = 10)}P.PID,C.CID 4 

{(Name = Jan) , (Credits = 10)}C.CID 3 

………. ……. 

                         

Similarly, further relational candidate and relational frequent 

itemsets can be generated until empty candidate itemset i.e. 

RCn = NULL is found.  

The candidate generation and obtaining frequent itemset 

process demonstrated in the above example illustrates briefly 

the process of mining frequent itemsets from multiple relations 

using the candidate generation approach. Similar to the 

drawback of Apriori algorithm, the major drawback with this 

approach is that a large number of relational candidate 

itemsets are generated which is a computationally expensive 

process. The computations and number of candidate itemsets 

increases with the increase in size of relational databases. 

Hence, this candidate generation approach is more suitable for 

a relational database having small number of relations as 

compared to the database having more relations. 

4. Summary and Conclusion 

This paper briefly explained the need of multi-relational data 

mining for real world applications. In spite of much 

recognition and need of this field, it yet requires much 

exploration. In this paper, an attempt has been made to derive 

the process of finding frequent itemsets from small size 

relational database. The same theoretical concept is 

demonstrated using an illustrative example. The algorithm 

follows an extended procedure similar to candidate generation 

based Apriori algorithm which is applicable to transactional 

database. In the paper, the concepts of relational candidate 

itemsets and relational frequent itemsets are given and a 

procedure to calculate the support count as well as procedure 

to obtain next level of candidate itemsets based on previous 

frequent itemsets are also introduced. 

Though using the concept of candidate generation, it is 

possible to extract frequent itemsets from relational database, 

this process generates large number of relational candidate 

itemsets. Even with increase in size of relational database, the 

number of relational candidate itemsets increases drastically. 

Hence, this process is computationally expensive. With 

modifications to the presented approach, and yet applying tree 

based approaches may lead to increase in efficiency and 

efficacy of the goal.  
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